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Outline
• General Model – Observations
• Overview of approaches
• Factorization/sparsity (interior point/barrier)
• Decomposition
• Lagrangian methods
• Conclusions

Theme: taking advantage of repeated problem 
structure can yield significant computational savings. 
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General Stochastic Programming 
Model: Discrete Time

• Find x=(x1,x2,…,xT) and p to
minimize    Ep [ Σt=1

Tft(xt,xt+1,p) ]
s.t. xt ∈ Xt, xt nonanticipative p in P (distribution class)

P[ ht (xt,xt+1,pt,) <= 0 ] >= a (chance constraint)

General Approaches:
• Simplify distribution (e.g., sample) and form a mathematical 
program:
• Solve step-by-step (dynamic program)
• Solve as single large-scale optimization problem
•Use iterative procedure of sampling and optimization steps
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Simplified Finite Sample Model
• Assume p is fixed and random variables represented by 

sample ξi
t for t=1,2,..,T, i=1,…,Nt with probabilities pi

t
,a(i) an ancestor of i, then model  becomes (no chance 
constraints):

minimize    Σt=1
T Σi=1

Nt pi
t ft(xa(i)

t,xi
t+1, ξi

t) 
s.t. xi

t ∈ Xi
t

Observations?
• Problems for different i are similar – solving one may help to solve others

• Problems may decompose across i and across t yielding

•smaller problems (that may scale linearly in size)

•opportunities for parallel computation. 
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Solving As Large-scale 
Mathematical Program

• Principles:
– discretization leads to mathematical program but large-scale
– use standard methods but exploit structure

• Direct methods
– take advantage of sparsity structure

• some efficiencies
– use similar subproblem structure

• greater efficiency

• Size
– unlimited (infinite numbers of variables)
– still solvable (caution on claims)
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Standard Approaches
• Sparsity Structure Advantage

– Partitioning
– Basis Factorization 
– Interior Point Factorization

• Similar/Small Problem Advantage
– DP Approaches: Decomposition

• Benders, L-shaped (Van Slyke – Wets)
• Dantzig-Wolfe (Primal Version)
• Regularized (Ruszczynski)
• Various Sampling Schemes (Higle/Sen Stochastic 

Decomposition, Abridge Nested Decomposition)
– Lagrangian Methods
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Sparsity Methods: Stochastic 
Linear Program Example

• Two-stage Linear Model:
X1 = {x1| A x1 = b, x1 >= 0}
f0(x0,x1)=c x1
f1 (x1,x2

i,ξ2
i) = q x2

i if T x1 + W x2
i = ξ2

i, 
x2

i >= 0; + ∞ otherwise
• Result: min c x1 + Σi=1

N1 p2
i q x2

i

s. t. A x1 = b, x1 >= 0
T x1 + W x2

i = ξ2
i, x2

i >= 0



January 23, 2003 Sandia National Labs, Livermore, CA 10

LP-Based Methods
• Using basis structure:

PERIOD 1 PERIO D 2

• Modest gains for simplex

Interior Point Matrix Structure

= A’

A’D2A’T= COMPLETE FILL-IN

A

T

T

T

T

W

W

W

W



January 23, 2003 Sandia National Labs, Livermore, CA 11

Alternatives For Interior Points
• Variable splitting (Mulvey Et Al.)

– Put in explicit nonanticipativity constraints

= A’

NEW 

•Result
•Reduced fill-in but larger matrix
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Other Interior Point Approaches
• Use of dual factorization or modified Schur

complement

A’T D2 A’=
=

Results:
• Speedups of 2 to 20 
•  Some instability => Indefinite system (Vanderbei et al.

Czyzyk et al.)
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Similar/small Problem Structure: 
Dynamic Programming View

• Stages: t=1,...,T
• States: xt -> Btxt(or other transformation)
• Value Function:

Qt(xt) = E[Qt(xt,ξt)] where
ξt is the random element and
Qt(xt,ξt)  = min ft(xt,xt+1,ξt) + Qt+1(xt+1)

s.t. xt+1 ∈ Xt+1t(,ξt) xt given
• Solve : iterate from T to 1
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Linear Model Structure
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• QN+1(xN) = 0, for all xN,

• Qt,k(xt-1,a(k)) is a piecewise linear, 
convex function of xt-1,a(k)
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Decomposition Methods
• Benders Idea

– Form an outer linearization ofQt

– Add Cuts On Function :

Qt

Linearization at iteration k
min at k : < Qt

new cut 
(optimality cut)

Use at each stage to approximate  value function
• Iterate between stages until all min = Qt

Feasible region

(feasibility cuts)
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Sample Results 

• SCAGR7 PROBLEM SET

LOG (NO. OF VARIABLES)

LOG (CPUS)

3 4 5 6 7
1

2

3

4 Standard LP 
NESTED DECOMP.

PARALLEL: 60-80% EFFICIENCY IN SPEEDUP

OTHER PROBLEMS:   SIMILAR RESULTS
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Decomposition Enhancements
• Optimal basis repetition

– Take advantage of having solved one problem to solve others
– Use bunching to solve multiple problems from root basis
– Share bases across levels of the scenario tree
– Use solution of single scenario as hot start

• Multicuts
– Create cuts for each descendant scenario

• Regularization 
– Add quadratic term to keep close to previous solution

• Sampling
– Stochastic decomposition (Higle/Sen)
– Importance sampling (Infanger/Dantzig/Glynn)
– Multistage (Pereira/Pinto, Abridged ND)
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Multistage: Pereira-Pinto Method
• Incorporates sampling into the general framework of 

the Nested Decomposition algorithm
• Assumptions:

– relatively complete recourse
• no feasibility cuts needed

– serial independence
• an optimality cut generated for any Stage t node is valid for all 

Stage t nodes

• Successfully applied to multistage stochastic water 
resource problems
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Pereira-Pinto Method
1. Randomly select H N-Stage scenarios
2. Starting at the root, a forward pass is made 

through the sampled portion of the scenario tree 
(solving ND subproblems)

3. A statistical estimate of the first stage objective 
value     is calculated using the total objective 
value obtained in each sampled scenario

the algorithm terminates if current first stage 
objective value c1x1 + θ1 is within a specified 
confidence interval of

4. Starting in sampled node of Stage t = N-
1,  solve all Stage t+1 descendant nodes 
and construct new optimality cut.  
Repeat for all sampled nodes in Stage t, 
then repeat for        t = t - 1

Sampled
Scenario #1

Sampled
Scenario #2

Sampled
Scenario #3

z

z
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Pereira-Pinto Method

• Advantages
– significantly reduces computation by 

eliminating a large portion of the scenario tree 
in the forward pass

• Disadvantages
– requires a complete backward pass on all 

sampled scenarios
• not well designed for bushier scenario trees
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Abridged Nested Decomposition

• Also incorporates sampling into the general 
framework of Nested Decomposition

• Also assumes relatively complete recourse 
and serial independence

• Samples both the subproblems to solve and 
the solutions to continue from in the 
forward pass
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Abridged Nested Decomposition

4. For each selected Stage t-1 subproblem solution, sample Stage t
subproblems and solve selected subset

5. Sample Stage t subproblem solutions and branch in Stage t+1 only 
from selected subset

1

2

3

4

5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Forward Pass
1. Solve root node subproblem

2. Sample Stage 2 subproblems
and solve selected subset

3. Sample Stage 2 subproblem
solutions and branch in Stage 
3 only from selected subset 
(i.e., nodes 1 and 2)
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Abridged Nested Decomposition

Convergence Test
1. Randomly select H N-Stage scenarios.  For each sampled scenario, solve

subproblems from root to leaf to obtain total objective value for scenario
2. Calculate statistical estimate of the first stage objective value

– algorithm terminates if current first stage objective value c1x1 + θ1 is within a 
specified confidence interval of    ; else, a new forward pass begins

1

2

3

4

5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Backward Pass
1. Starting in first branching 

node of Stage t = N-1,  solve 
all Stage t+1 descendant 
nodes and construct new 
optimality cut for all stage t
subproblems.  Repeat for all 
sampled nodes in Stage t, 
then repeat for t = t - 1

z

z
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Sample Computational Results
• Test Problems

– Dynamic Vehicle Allocation (DVA) problems of various 
sizes

• set of homogeneous vehicles move full loads between set of sites
• vehicles can move empty or loaded, remain stationary
• demand to move load between two sites is stochastic

– DVA.x.y.z
• x number of sites (8, 12, 16)
• y number of stages (4, 5)
• z number of distinct realizations per stage (30, 45, 60, 75)

– largest problem has > 30 million scenarios
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Computational Results (DVA.8)
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Lagrangian-based Approaches
• General idea:

– Relax nonanticipativity
– Place in objective
– Separable problems

MIN    E [ Σt=1
T ft(xt,xt+1) ]

s.t. xt ∈ Xt
xt nonanticipative

MIN       E [ Σt=1
T ft(xt,xt+1) ]

xt ∈ Xt
+ E[w,x] + r/2||x-x||2

Update:  wt;  Project: x into N - nonanticipative space as x

Convergence: Convex problems - Progressive Hedging Alg. 
(Rockafellar and Wets)

Advantage: Maintain problem structure (networks)
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Lagrangian Methods and Integer 
Variables

• Idea: Lagrangian dual provides bound for primal but 
– Duality gap
– PHA may not converge

• Alternative: standard augmented Lagrangian
– Convergence to dual solution
– Lose separability
– May obtain simplified set for branching to integer solutions

• Problem structure: Power generation problems
– Especially efficient on parallel processors
– Decreasing duality gap in number of generation units
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Some Open Issues
• Models

– Impact on methods
– Relation to other areas

• Approximations
– Use with sampling methods
– Computation Constrained Bounds
– Solution Bounds

• Solution methods
– Exploit specific structure
– Parallel/distributed architectures
– Links to approximations
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Criticisms

• Unknown costs or distributions
– Find all available information
– Can construct bounds over all distributions

• Fitting the information
– Still have known errors but alternative solutions

• Computational difficulty
– Fit model to solution ability
– Size of problems increasing rapidly
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Conclusions
• Stochastic programs structure:

– repeated problems
– nonzero pattern for sparsity
– use of decomposition ideas

• Results
– take advantage of the structure
– speedups of orders of magnitude


